Beta PCF8563 RTC library.

This is a rework of SQFMI's port of the original PCF8563 library with (hopefully) direct operational functionality for all Watchy watchfaces.
This commit is contained in:
GuruSR 2021-11-21 22:51:43 -05:00 committed by GitHub
parent 38c801d3b6
commit 614b005a54
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 1011 additions and 0 deletions

681
Library/PCF8563.cpp Normal file
View File

@ -0,0 +1,681 @@
/*****
* NAME
* Pcf8563 Real Time Clock support routines
* AUTHOR
* Joe Robertson, jmr
* orbitalair@bellsouth.net
* http://orbitalair.wikispaces.com/Arduino
* CREATION DATE
* 9/24/06, init - built off of usart demo. using mikroC
* NOTES
* HISTORY
* 10/14/06 ported to CCS compiler, jmr
* 2/21/09 changed all return values to hex val and not bcd, jmr
* 1/10/10 ported to arduino, jmr
* 2/14/10 added 3 world date formats, jmr
* 28/02/2012 A. Pasotti
* fixed a bug in RTCC_ALARM_AF,
* added a few (not really useful) methods
* 22/10/2014 Fix whitespace, tabs, and newlines, cevich
* 22/10/2014 add voltLow get/set, cevich
* 22/10/2014 add century get, cevich
* 22/10/2014 Fix get/set date/time race condition, cevich
* 22/10/2014 Header/Code rearranging, alarm/timer flag masking
* extern Wire, cevich
* 26/11/2014 Add zeroClock(), initialize to lowest possible
* values, cevich
* 22/10/2014 add timer support, cevich
*
* TODO
* x Add Euro date format
* Add short time (hh:mm) format
* Add 24h/12h format
******
* Robodoc embedded documentation.
* http://www.xs4all.nl/~rfsber/Robo/robodoc.html
*/
#include <Arduino.h>
#include "PCF8563.h"
PCF8563::PCF8563(bool initI2C)
{
Wire.begin();
Rtcc_Addr = RTCC_R>>1;
}
/* Private internal functions, but useful to look at if you need a similar func. */
byte PCF8563::decToBcd(byte val)
{
return ( (val/10*16) + (val%10) );
}
byte PCF8563::bcdToDec(byte val)
{
return ( (val/16*10) + (val%16) );
}
void PCF8563::zeroClock()
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)0x0); // start address
Wire.write((byte)0x0); //control/status1
Wire.write((byte)0x0); //control/status2
Wire.write((byte)0x00); //set seconds to 0 & VL to 0
Wire.write((byte)0x00); //set minutes to 0
Wire.write((byte)0x00); //set hour to 0
Wire.write((byte)0x01); //set day to 1
Wire.write((byte)0x00); //set weekday to 0
Wire.write((byte)0x81); //set month to 1, century to 1900
Wire.write((byte)0x00); //set year to 0
Wire.write((byte)0x80); //minute alarm value reset to 00
Wire.write((byte)0x80); //hour alarm value reset to 00
Wire.write((byte)0x80); //day alarm value reset to 00
Wire.write((byte)0x80); //weekday alarm value reset to 00
Wire.write((byte)SQW_32KHZ); //set SQW to default, see: setSquareWave
Wire.write((byte)0x0); //timer off
Wire.endTransmission();
}
void PCF8563::clearStatus()
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)0x0);
Wire.write((byte)0x0); //control/status1
Wire.write((byte)0x0); //control/status2
Wire.endTransmission();
}
/*
* Read status byte
*/
byte PCF8563::readStatus2()
{
getDateTime();
return getStatus2();
}
void PCF8563::clearVoltLow(void)
{
getDateTime();
// Only clearing is possible on device (I tried)
setDateTime(getDay(), getWeekday(), getMonth(),
getCentury(), getYear(), getHour(),
getMinute(), getSecond());
}
/*
* Atomicly read all device registers in one operation
*/
void PCF8563::getDateTime(void)
{
/* Start at beginning, read entire memory in one go */
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT1_ADDR);
Wire.endTransmission();
/* As per data sheet, have to read everything all in one operation */
uint8_t readBuffer[16] = {0};
Wire.requestFrom(Rtcc_Addr, 16);
for (uint8_t i=0; i < 16; i++)
readBuffer[i] = Wire.read();
// status bytes
_status1 = readBuffer[0];
_status2 = readBuffer[1];
// time bytes
//0x7f = 0b01111111
_volt_low = readBuffer[2] & RTCC_VLSEC_MASK; //VL_Seconds
_sec = bcdToDec(readBuffer[2] & ~RTCC_VLSEC_MASK);
_minute = bcdToDec(readBuffer[3] & 0x7f);
//0x3f = 0b00111111
_hour = bcdToDec(readBuffer[4] & 0x3f);
// date bytes
//0x3f = 0b00111111
_day = bcdToDec(readBuffer[5] & 0x3f);
//0x07 = 0b00000111
_weekday = bcdToDec(readBuffer[6] & 0x07);
//get raw month data byte and set month and century with it.
_month = readBuffer[7];
if (_month & RTCC_CENTURY_MASK)
_century = true;
else
_century = false;
//0x1f = 0b00011111
_month = _month & 0x1f;
_month = bcdToDec(_month);
_year = bcdToDec(readBuffer[8]);
// alarm bytes
_alarm_minute = readBuffer[9];
if(B10000000 & _alarm_minute)
_alarm_minute = RTCC_NO_ALARM;
else
_alarm_minute = bcdToDec(_alarm_minute & B01111111);
_alarm_hour = readBuffer[10];
if(B10000000 & _alarm_hour)
_alarm_hour = RTCC_NO_ALARM;
else
_alarm_hour = bcdToDec(_alarm_hour & B00111111);
_alarm_day = readBuffer[11];
if(B10000000 & _alarm_day)
_alarm_day = RTCC_NO_ALARM;
else
_alarm_day = bcdToDec(_alarm_day & B00111111);
_alarm_weekday = readBuffer[12];
if(B10000000 & _alarm_weekday)
_alarm_weekday = RTCC_NO_ALARM;
else
_alarm_weekday = bcdToDec(_alarm_weekday & B00000111);
// CLKOUT_control 0x03 = 0b00000011
_squareWave = readBuffer[13] & 0x03;
// timer bytes
_timer_control = readBuffer[14] & 0x03;
_timer_value = readBuffer[15]; // current value != set value when running
}
void PCF8563::setDateTime(byte day, byte weekday, byte month,
bool century, byte year, byte hour,
byte minute, byte sec)
{
/* year val is 00 to 99, xx
with the highest bit of month = century
0=20xx
1=19xx
*/
month = decToBcd(month);
if (century)
month |= RTCC_CENTURY_MASK;
else
month &= ~RTCC_CENTURY_MASK;
/* As per data sheet, have to set everything all in one operation */
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write(RTCC_SEC_ADDR); // send addr low byte, req'd
Wire.write(decToBcd(sec) &~RTCC_VLSEC_MASK); //set sec, clear VL bit
Wire.write(decToBcd(minute)); //set minutes
Wire.write(decToBcd(hour)); //set hour
Wire.write(decToBcd(day)); //set day
Wire.write(decToBcd(weekday)); //set weekday
Wire.write(month); //set month, century to 1
Wire.write(decToBcd(year)); //set year to 99
Wire.endTransmission();
// Keep values in-sync with device
getDateTime();
}
/**
* Get alarm, set values to RTCC_NO_ALARM (99) if alarm flag is not set
*/
void PCF8563::getAlarm()
{
getDateTime();
}
/*
* Returns true if AIE is on
*
*/
bool PCF8563::alarmEnabled()
{
return getStatus2() & RTCC_ALARM_AIE;
}
/*
* Returns true if AF is on
*
*/
bool PCF8563::alarmActive()
{
return getStatus2() & RTCC_ALARM_AF;
}
/* enable alarm interrupt
* whenever the clock matches these values an int will
* be sent out pin 3 of the Pcf8563 chip
*/
void PCF8563::enableAlarm()
{
getDateTime(); // operate on current values
//set status2 AF val to zero
_status2 &= ~RTCC_ALARM_AF;
//set TF to 1 masks it from changing, as per data-sheet
_status2 |= RTCC_TIMER_TF;
//enable the interrupt
_status2 |= RTCC_ALARM_AIE;
//enable the interrupt
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
}
/* set the alarm values
* whenever the clock matches these values an int will
* be sent out pin 3 of the Pcf8563 chip
*/
void PCF8563::setAlarm(byte min, byte hour, byte day, byte weekday)
{
getDateTime(); // operate on current values
if (min <99) {
min = constrain(min, 0, 59);
min = decToBcd(min);
min &= ~RTCC_ALARM;
} else {
min = 0x0; min |= RTCC_ALARM;
}
if (hour <99) {
hour = constrain(hour, 0, 23);
hour = decToBcd(hour);
hour &= ~RTCC_ALARM;
} else {
hour = 0x0; hour |= RTCC_ALARM;
}
if (day <99) {
day = constrain(day, 1, 31);
day = decToBcd(day); day &= ~RTCC_ALARM;
} else {
day = 0x0; day |= RTCC_ALARM;
}
if (weekday <99) {
weekday = constrain(weekday, 0, 6);
weekday = decToBcd(weekday);
weekday &= ~RTCC_ALARM;
} else {
weekday = 0x0; weekday |= RTCC_ALARM;
}
_alarm_hour = hour;
_alarm_minute = min;
_alarm_weekday = weekday;
_alarm_day = day;
// First set alarm values, then enable
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_ALRM_MIN_ADDR);
Wire.write((byte)_alarm_minute);
Wire.write((byte)_alarm_hour);
Wire.write((byte)_alarm_day);
Wire.write((byte)_alarm_weekday);
Wire.endTransmission();
PCF8563::enableAlarm();
}
void PCF8563::clearAlarm()
{
//set status2 AF val to zero to reset alarm
_status2 &= ~RTCC_ALARM_AF;
//set TF to 1 masks it from changing, as per data-sheet
_status2 |= RTCC_TIMER_TF;
//turn off the interrupt
_status2 &= ~RTCC_ALARM_AIE;
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
}
/**
* Reset the alarm leaving interrupt unchanged
*/
void PCF8563::resetAlarm()
{
//set status2 AF val to zero to reset alarm
_status2 &= ~RTCC_ALARM_AF;
//set TF to 1 masks it from changing, as per data-sheet
_status2 |= RTCC_TIMER_TF;
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
}
// true if timer interrupt and control is enabled
bool PCF8563::timerEnabled()
{
if (getStatus2() & RTCC_TIMER_TIE)
if (_timer_control & RTCC_TIMER_TE)
return true;
return false;
}
// true if timer is active
bool PCF8563::timerActive()
{
return getStatus2() & RTCC_TIMER_TF;
}
// enable timer and interrupt
void PCF8563::enableTimer(void)
{
getDateTime();
//set TE to 1
_timer_control |= RTCC_TIMER_TE;
//set status2 TF val to zero
_status2 &= ~RTCC_TIMER_TF;
//set AF to 1 masks it from changing, as per data-sheet
_status2 |= RTCC_ALARM_AF;
//enable the interrupt
_status2 |= RTCC_TIMER_TIE;
// Enable interrupt first, then enable timer
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_TIMER1_ADDR);
Wire.write((byte)_timer_control); // Timer starts ticking now!
Wire.endTransmission();
}
// set count-down value and frequency
void PCF8563::setTimer(byte value, byte frequency, bool is_pulsed)
{
getDateTime();
if (is_pulsed)
_status2 |= is_pulsed << 4;
else
_status2 &= ~(is_pulsed << 4);
_timer_value = value;
// TE set to 1 in enableTimer(), leave 0 for now
_timer_control |= (frequency & RTCC_TIMER_TD10); // use only last 2 bits
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_TIMER1_ADDR);
Wire.write((byte)_timer_control);
Wire.write((byte)_timer_value);
Wire.endTransmission();
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
enableTimer();
}
// clear timer flag and interrupt
void PCF8563::clearTimer(void)
{
getDateTime();
//set status2 TF val to zero
_status2 &= ~RTCC_TIMER_TF;
//set AF to 1 masks it from changing, as per data-sheet
_status2 |= RTCC_ALARM_AF;
//turn off the interrupt
_status2 &= ~RTCC_TIMER_TIE;
//turn off the timer
_timer_control = 0;
// Stop timer first
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_TIMER1_ADDR);
Wire.write((byte)_timer_control);
Wire.endTransmission();
// clear flag and interrupt
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
}
// clear timer flag but leave interrupt unchanged */
void PCF8563::resetTimer(void)
{
getDateTime();
//set status2 TF val to zero to reset timer
_status2 &= ~RTCC_TIMER_TF;
//set AF to 1 masks it from changing, as per data-sheet
_status2 |= RTCC_ALARM_AF;
Wire.beginTransmission(Rtcc_Addr);
Wire.write((byte)RTCC_STAT2_ADDR);
Wire.write((byte)_status2);
Wire.endTransmission();
}
/**
* Set the square wave pin output
*/
void PCF8563::setSquareWave(byte frequency)
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)RTCC_SQW_ADDR);
Wire.write((byte)frequency);
Wire.endTransmission();
}
void PCF8563::clearSquareWave()
{
PCF8563::squareWave(SQWAVE_NONE);
}
void PCF8563::initClock()
{
Wire.beginTransmission(Rtcc_Addr); // Issue I2C start signal
Wire.write((byte)0x0); // start address
Wire.write((byte)0x0); //control/status1
Wire.write((byte)0x0); //control/status2
Wire.write((byte)0x81); //set seconds & VL
Wire.write((byte)0x01); //set minutes
Wire.write((byte)0x01); //set hour
Wire.write((byte)0x01); //set day
Wire.write((byte)0x01); //set weekday
Wire.write((byte)0x01); //set month, century to 1
Wire.write((byte)0x01); //set year to 99
Wire.write((byte)0x80); //minute alarm value reset to 00
Wire.write((byte)0x80); //hour alarm value reset to 00
Wire.write((byte)0x80); //day alarm value reset to 00
Wire.write((byte)0x80); //weekday alarm value reset to 00
Wire.write((byte)0x0); //set SQW, see: setSquareWave
Wire.write((byte)0x0); //timer off
Wire.endTransmission();
}
void PCF8563::setTime(byte hour, byte minute, byte sec)
{
getDateTime();
setDateTime(getDay(), getWeekday(), getMonth(),
getCentury(), getYear(), hour, minute, sec);
}
void PCF8563::setDate(byte day, byte weekday, byte month, bool century, byte year)
{
getDateTime();
setDateTime(day, weekday, month, century, year,
getHour(), getMinute(), getSecond());
}
void PCF8563::getDate()
{
getDateTime();
}
void PCF8563::getTime()
{
getDateTime();
}
bool PCF8563::getVoltLow(void)
{
return _volt_low;
}
byte PCF8563::getSecond() {
return _sec;
}
byte PCF8563::getMinute() {
return _minute;
}
byte PCF8563::getHour() {
return _hour;
}
byte PCF8563::getAlarmMinute() {
return _alarm_minute;
}
byte PCF8563::getAlarmHour() {
return _alarm_hour;
}
byte PCF8563::getAlarmDay() {
return _alarm_day;
}
byte PCF8563::getAlarmWeekday() {
return _alarm_weekday;
}
byte PCF8563::getTimerControl() {
return _timer_control;
}
byte PCF8563::getTimerValue() {
// Impossible to freeze this value, it could
// be changing during read. Multiple reads
// required to check for consistency.
uint8_t last_value;
do {
last_value = _timer_value;
getDateTime();
} while (_timer_value != last_value);
return _timer_value;
}
byte PCF8563::getDay() {
return _day;
}
byte PCF8563::getMonth() {
return _month;
}
byte PCF8563::getYear() {
return _year;
}
bool PCF8563::getCentury() {
return _century;
}
byte PCF8563::getWeekday() {
return _weekday;
}
byte PCF8563::getStatus1() {
return _status1;
}
byte PCF8563::getStatus2() {
return _status2;
}
// Functions below "Mimic" the DS3232RTC code, so this library can be a drop in replacement for most Watch faces.
// Read the current time from the RTC and return it as a time_t
// value. Returns a zero value if an I2C error occurred (e.g. RTC
// not present).
time_t PCF8563::get()
{
tmElements_t tm;
if ( read(tm) ) return 0;
return( makeTime(tm) );
}
// Set the RTC to the given time_t value and clear the
// oscillator stop flag (OSF) in the Control/Status register.
// Returns the I2C status (zero if successful).
byte PCF8563::set(time_t t)
{
tmElements_t tm;
breakTime(t, tm);
return ( write(tm) );
}
// Read the current time from the RTC and return it in a tmElements_t
// structure. Returns the I2C status (zero if successful).
byte PCF8563::read(tmElements_t &tm)
{
getDateTime();
tm.Year = _year;
tm.Month = _month;
tm.Day = _day;
tm.Wday = _weekday;
tm.Hour = _hour;
tm.Minute = _minute;
tm.Second = _sec;
tm.Year += TIME_H_DIFF; // Add the extra 30 years on when using this function.
// tm.Year = y2kYearToTm(T.Year);
return 0;
}
// Set the RTC time from a tmElements_t structure and clear the
// oscillator stop flag (OSF) in the Control/Status register.
// Returns the I2C status (zero if successful).
byte PCF8563::write(tmElements_t &tm)
{
tmElements_t T = tm;
T.Year -= TIME_H_DIFF; // Take the extra 30 years off when using this function.
setDateTime(T.Day, T.Wday, T.Month, 0, T.Year, T.Hour, T.Minute, T.Second);
return 0;
}
void PCF8563::setAlarm(ALARM_TYPES_t alarmType, byte seconds, byte minutes, byte hours, byte daydate) { setAlarm(minutes, hours, daydate, 0); }
void PCF8563::setAlarm(ALARM_TYPES_t alarmType, byte minutes, byte hours, byte daydate) { setAlarm(minutes, hours, daydate, 0); }
void PCF8563::alarmInterrupt(byte alarmNumber, bool alarmEnabled) { if (alarmEnabled) enableAlarm(); else resetAlarm(); }
bool PCF8563::alarm(byte alarmNumber)
{
tmElements_t tm;
time_t t;
if (alarmNumber == ALARM_2)
{
clearAlarm();
getDateTime();
tm.Year = _year;
tm.Month = _month;
tm.Day = _day;
tm.Wday = _weekday;
tm.Hour = _hour;
tm.Minute = _minute;
tm.Second = _sec;
tm.Year += TIME_H_DIFF; // Add the extra 30 years on when using this function.
t = makeTime(tm) + (60 - _sec);
breakTime(t, tm);
setAlarm(tm.Minute, tm.Hour, tm.Day, tm.Wday);
enableAlarm();
}
return (_status2 & RTCC_ALARM_AF);
}
bool PCF8563::checkAlarm(byte alarmNumber) { return alarm(alarmNumber); }
bool PCF8563::clearAlarm(byte alarmNumber) { clearAlarm(); }
void PCF8563::squareWave(SQWAVE_FREQS_t freq) { setSquareWave((byte)freq); }
bool PCF8563::oscStopped(bool clearOSF) { return false; } // Not sure this works.
int16_t PCF8563::temperature() { return 32767; } // 0x7FFF returns to prove it is the PCF8563 not the DS3232.

View File

@ -1 +1,331 @@
/*****
* NAME
* Pcf8563 Real Time Clock support routines
* AUTHOR
* Joe Robertson, jmr
* orbitalair@bellsouth.net
* http://orbitalair.wikispaces.com/Arduino
* CREATION DATE
* 9/24/06, init - built off of usart demo. using mikroC
* NOTES
* HISTORY
* 10/14/06 ported to CCS compiler, jmr
* 2/21/09 changed all return values to hex val and not bcd, jmr
* 1/10/10 ported to arduino, jmr
* 2/14/10 added 3 world date formats, jmr
* 28/02/2012 A. Pasotti
* fixed a bug in RTCC_ALARM_AF,
* added a few (not really useful) methods
* 22/10/2014 Fix whitespace, tabs, and newlines, cevich
* 22/10/2014 add voltLow get/set, cevich
* 22/10/2014 add century get, cevich
* 22/10/2014 Fix get/set date/time race condition, cevich
* 22/10/2014 Header/Code rearranging, alarm/timer flag masking,
* extern Wire, cevich
* 26/11/2014 Add zeroClock(), initialize to lowest possible
* values, cevich
* 22/10/2014 add timer support, cevich
*
* TODO
* x Add Euro date format
* Add short time (hh:mm) format
* Add 24h/12h format
******
* Robodoc embedded documentation.
* http://www.xs4all.nl/~rfsber/Robo/robodoc.html
*/
#ifndef PCF8563_H
#define PCF8563_H
/* the read and write values for pcf8563 rtcc */
/* these are adjusted for arduino */
#define RTCC_R 0xa3
#define RTCC_W 0xa2
#define RTCC_SEC 1
#define RTCC_MIN 2
#define RTCC_HR 3
#define RTCC_DAY 4
#define RTCC_WEEKDAY 5
#define RTCC_MONTH 6
#define RTCC_YEAR 7
#define RTCC_CENTURY 8
/* register addresses in the rtc */
#define RTCC_STAT1_ADDR 0x0
#define RTCC_STAT2_ADDR 0x01
#define RTCC_SEC_ADDR 0x02
#define RTCC_MIN_ADDR 0x03
#define RTCC_HR_ADDR 0x04
#define RTCC_DAY_ADDR 0x05
#define RTCC_WEEKDAY_ADDR 0x06
#define RTCC_MONTH_ADDR 0x07
#define RTCC_YEAR_ADDR 0x08
#define RTCC_ALRM_MIN_ADDR 0x09
#define RTCC_SQW_ADDR 0x0D
#define RTCC_TIMER1_ADDR 0x0E
#define RTCC_TIMER2_ADDR 0x0F
/* setting the alarm flag to 0 enables the alarm.
* set it to 1 to disable the alarm for that value.
*/
#define RTCC_ALARM 0x80
#define RTCC_ALARM_AIE 0x02
#define RTCC_ALARM_AF 0x08
/* optional val for no alarm setting */
#define RTCC_NO_ALARM 99
#define RTCC_TIMER_TIE 0x01 // Timer Interrupt Enable
#define RTCC_TIMER_TF 0x04 // Timer Flag, read/write active state
// When clearing, be sure to set RTCC_TIMER_AF
// to 1 (see note above).
#define RTCC_TIMER_TI_TP 0x10 // 0: INT is active when TF is active
// (subject to the status of TIE)
// 1: INT pulses active
// (subject to the status of TIE);
// Note: TF stays active until cleared
// no matter what RTCC_TIMER_TI_TP is.
#define RTCC_TIMER_TD10 0x03 // Timer source clock, TMR_1MIN saves power
#define RTCC_TIMER_TE 0x80 // Timer 1:enable/0:disable
/* Timer source-clock frequency constants */
#define TMR_4096HZ B00000000
#define TMR_64Hz B00000001
#define TMR_1Hz B00000010
#define TMR_1MIN B00000011
#define RTCC_CENTURY_MASK 0x80
#define RTCC_VLSEC_MASK 0x80
/* date format flags */
#define RTCC_DATE_WORLD 0x01
#define RTCC_DATE_ASIA 0x02
#define RTCC_DATE_US 0x04
/* time format flags */
#define RTCC_TIME_HMS 0x01
#define RTCC_TIME_HM 0x02
// Alarm masks
enum ALARM_TYPES_t {
ALM1_EVERY_SECOND = 0x0F,
ALM1_MATCH_SECONDS = 0x0E,
ALM1_MATCH_MINUTES = 0x0C, // match minutes *and* seconds
ALM1_MATCH_HOURS = 0x08, // match hours *and* minutes, seconds
ALM1_MATCH_DATE = 0x00, // match date *and* hours, minutes, seconds
ALM1_MATCH_DAY = 0x10, // match day *and* hours, minutes, seconds
ALM2_EVERY_MINUTE = 0x8E,
ALM2_MATCH_MINUTES = 0x8C, // match minutes
ALM2_MATCH_HOURS = 0x88, // match hours *and* minutes
ALM2_MATCH_DATE = 0x80, // match date *and* hours, minutes
ALM2_MATCH_DAY = 0x90, // match day *and* hours, minutes
};
// Square-wave output frequency (TS2, RS1 bits)
#define SQW_32KHZ B10000000
enum SQWAVE_FREQS_t {
SQWAVE_1_HZ = B10000011,
SQWAVE_1024_HZ = B10000001,
SQWAVE_4096_HZ = 0,
SQWAVE_8192_HZ = 0,
SQWAVE_NONE = B00000000
};
#define ALARM_1 1 // constants for alarm functions
#define ALARM_2 2
#define TIME_H_DIFF 30 // 30 years difference between 2000 and 1970 when using TimeLib functions.
/* DS3232RTC compatibility Ends */
#include <Arduino.h>
#include <TimeLib.h>
#include <Wire.h>
extern TwoWire Wire;
/* arduino class */
class PCF8563 {
public:
PCF8563(bool initI2C = true);
void zeroClock(); /* Zero date/time, alarm / timer, default clkout */
void clearStatus(); /* set both status bytes to zero */
byte readStatus2();
void clearVoltLow(void); /* Only clearing is possible */
void getDateTime(); /* get date and time vals to local vars */
void setDateTime(byte day, byte weekday, byte month, bool century, byte year,
byte hour, byte minute, byte sec);
void getAlarm(); // same as getDateTime
bool alarmEnabled(); // true if alarm interrupt is enabled
bool alarmActive(); // true if alarm is active (going off)
void enableAlarm(); /* activate alarm flag and interrupt */
/* set alarm vals, 99=ignore */
void setAlarm(byte min, byte hour, byte day, byte weekday);
void clearAlarm(); /* clear alarm flag and interrupt */
void resetAlarm(); /* clear alarm flag but leave interrupt unchanged */
bool timerEnabled(); // true if timer and interrupt is enabled
bool timerActive(); // true if timer is active (going off)
void enableTimer(void); // activate timer flag and interrupt
void setTimer(byte value, byte frequency, bool is_pulsed); // set value & frequency
void clearTimer(void); // clear timer flag, and interrupt, leave value unchanged
void resetTimer(void); // same as clearTimer() but leave interrupt unchanged */
void setSquareWave(byte frequency);
void clearSquareWave();
/* Return leap-days between start (inclusive) and end (exclusive) */
int leapDaysBetween(byte century_start, byte year_start,
byte century_end, byte year_end) const;
/* Return True if century (1: 1900, 0:2000) + decade is a leap year. */
bool isLeapYear(byte century, int year) const;
/* Return number of days in any month of any decade of any year */
byte daysInMonth(byte century, byte year, byte month) const;
/* Return the number of days since the beginning of a particular year*/
byte daysInYear(byte century, byte year, byte month, byte day) const;
/* Return the weekday for any date after 1900 */
byte whatWeekday(byte day, byte month, byte century, int year) const;
bool getVoltLow();
byte getSecond();
byte getMinute();
byte getHour();
byte getDay();
byte getMonth();
byte getYear();
bool getCentury();
byte getWeekday();
byte getStatus1();
byte getStatus2();
byte getAlarmMinute();
byte getAlarmHour();
byte getAlarmDay();
byte getAlarmWeekday();
byte getTimerControl();
byte getTimerValue();
// Sets date/time to static fixed values, disable all alarms
// use zeroClock() above to guarantee lowest possible values instead.
void initClock();
// Slightly unsafe, don't use for new code, use above instead!
void setTime(byte hour, byte minute, byte sec);
void getTime(); // unsafe, don't use
void setDate(byte day, byte weekday, byte month, bool century, byte year);
void getDate(); // unsafe, don't use
// DS3232RTC compat
time_t get();
byte set(time_t t);
byte read(tmElements_t &tm);
byte write(tmElements_t &tm);
void setAlarm(ALARM_TYPES_t alarmType, byte seconds, byte minutes, byte hours, byte daydate);
void setAlarm(ALARM_TYPES_t alarmType, byte minutes, byte hours, byte daydate);
void alarmInterrupt(byte alarmNumber, bool alarmEnabled);
bool alarm(byte alarmNumber);
bool checkAlarm(byte alarmNumber);
bool clearAlarm(byte alarmNumber);
void squareWave(SQWAVE_FREQS_t freq);
bool oscStopped(bool clearOSF = false);
int16_t temperature();
// DS3232RTC compat End
static byte errCode;
private:
/* methods */
byte decToBcd(byte value);
byte bcdToDec(byte value);
/* time variables */
byte _hour;
byte _minute;
bool _volt_low;
byte _sec;
byte _day;
byte _weekday;
byte _month;
byte _year;
/* alarm */
byte _alarm_hour;
byte _alarm_minute;
byte _alarm_weekday;
byte _alarm_day;
/* CLKOUT */
byte _squareWave;
/* timer */
byte _timer_control;
byte _timer_value;
/* support */
byte _status1;
byte _status2;
bool _century;
int Rtcc_Addr;
};
inline int PCF8563::leapDaysBetween(byte century_start, byte year_start,
byte century_end, byte year_end) const {
// Credit: Victor Haydin via stackoverflow.com
int span_start = 2000 - (century_start * 100) + year_start;
int span_end = 2000 - (century_end * 100) + year_end - 1; // less year_end
// Subtract leap-years before span_start, from leap-years before span_end
return ((span_end / 4) - (span_end / 100) + (span_end / 400)) -
((span_start / 4) - (span_start / 100) + (span_start / 400));
}
inline bool PCF8563::isLeapYear(byte century, int year) const
{
year = 2000 - (century * 100) + year;
if ((year % 4) != 0)
return false;
else if ((year % 100) != 0)
return true;
else if ((year % 400) != 0)
return false;
else
return true;
}
inline byte PCF8563::daysInMonth(byte century,
byte year,
byte month) const
{
const int days[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
byte dim = days[month];
if (month == 2 && isLeapYear(century, year))
dim += 1;
return dim;
}
inline byte PCF8563::daysInYear(byte century,
byte year,
byte month,
byte day) const
{
const int days[12] = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334};
byte total = days[month - 1] + day;
if ((month > 2) and isLeapYear(century, year))
total += 1;
return total;
}
inline byte PCF8563::whatWeekday(byte day, byte month,
byte century, int year) const
{
year = 2000 - (century * 100) + year;
// Credit: Tomohiko Sakamoto
// http://en.wikipedia.org/wiki/Determination_of_the_day_of_the_week
year -= month < 3;
static int trans[] = {0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4};
return (year + year / 4 - year / 100 + year / 400 +
trans[month - 1] + day) % 7;
}
#endif