Ken Van Hoeylandt ee5a5a7181
Merge develop into main (#304)
## New

- Read property files with `PropertiesFile`
- Support `boot.properties` so the user can specify the launcher app and an optional app to start after the launcher finishes. (see `BootProperties.cpp`)
- Create registry for CPU affinity and update code to make use of it
- `AppRegistration` and `ServiceRegistration` now also ensure that the `/data` directories always exist for all apps
- `Notes` is now the default app for opening text files. `TextViewer` is removed entirely. Created `tt::app:🎶:start(path)` function.
- WiFi settings moved from NVS to properties file.
- Specify `*.ap.properties` file on the SD card for automatic WiFi settings import on start-up.
- Added `file::getLock(path)` and `file::withLock(path, function)` to do safe file operations on SD cards

## Improvements

- Update TinyUSB to `1.7.6~1`
- Improved `Boot.cpp` code. General code quality fixes and some restructuring to improve readability.
- `tt::string` functionality improvements
- Rename `AppRegistry` to `AppRegistration`
- Rename `ServiceRegistry` to `ServiceRegistration`
- Cleanup in `Notes.cpp`
- `FileTest.cpp` fix for PC
- Created `TestFile` helper class for tests, which automatically deletes files after the test.
- Renamed `Partitions.h` to `MountPoints.h`
- Created `std::string getMountPoints()` function for easy re-use
- Other code quality improvements
- `SdCardDevice`'s `getState()` and `isMounted()` now have a timeout argument

## Fixes

- ELF loading now has a lock so to avoid a bug when 2 ELF apps are loaded in parallel
2025-08-23 17:10:18 +02:00

954 lines
30 KiB
C++

#ifdef ESP_PLATFORM
#include "Tactility/service/wifi/Wifi.h"
#include "Tactility/TactilityHeadless.h"
#include "Tactility/service/ServiceContext.h"
#include "Tactility/service/wifi/WifiGlobals.h"
#include "Tactility/service/wifi/WifiSettings.h"
#include "Tactility/service/wifi/WifiBootSplashInit.h"
#include <Tactility/kernel/SystemEvents.h>
#include <Tactility/Timer.h>
#include <lwip/esp_netif_net_stack.h>
#include <freertos/FreeRTOS.h>
#include <atomic>
#include <cstring>
#include <sys/cdefs.h>
namespace tt::service::wifi {
#define TAG "wifi_service"
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
#define AUTO_SCAN_INTERVAL 10000 // ms
// Forward declarations
class Wifi;
static void scan_list_free_safely(std::shared_ptr<Wifi> wifi);
// Methods for main thread dispatcher
static void dispatchAutoConnect(std::shared_ptr<Wifi> wifi);
static void dispatchEnable(std::shared_ptr<Wifi> wifi);
static void dispatchDisable(std::shared_ptr<Wifi> wifi);
static void dispatchScan(std::shared_ptr<Wifi> wifi);
static void dispatchConnect(std::shared_ptr<Wifi> wifi);
static void dispatchDisconnectButKeepActive(std::shared_ptr<Wifi> wifi);
class Wifi {
std::atomic<RadioState> radio_state = RadioState::Off;
bool scan_active = false;
bool secure_connection = false;
public:
/** @brief Locking mechanism for modifying the Wifi instance */
Mutex radioMutex = Mutex(Mutex::Type::Recursive);
Mutex dataMutex = Mutex(Mutex::Type::Recursive);
std::unique_ptr<Timer> autoConnectTimer;
/** @brief The public event bus */
std::shared_ptr<PubSub> pubsub = std::make_shared<PubSub>();
// TODO: Deal with messages that come in while an action is ongoing
// for example: when scanning and you turn off the radio, the scan should probably stop or turning off
// the radio should disable the on/off button in the app as it is pending.
/** @brief The network interface when wifi is started */
esp_netif_t* _Nullable netif = nullptr;
/** @brief Scanning results */
wifi_ap_record_t* _Nullable scan_list = nullptr;
/** @brief The current item count in scan_list (-1 when scan_list is NULL) */
uint16_t scan_list_count = 0;
/** @brief Maximum amount of records to scan (value > 0) */
uint16_t scan_list_limit = TT_WIFI_SCAN_RECORD_LIMIT;
/** @brief when we last requested a scan. Loops around every 50 days. */
TickType_t last_scan_time = portMAX_DELAY;
esp_event_handler_instance_t event_handler_any_id = nullptr;
esp_event_handler_instance_t event_handler_got_ip = nullptr;
EventFlag connection_wait_flags;
settings::WifiApSettings connection_target;
bool pause_auto_connect = false; // Pause when manually disconnecting until manually connecting again
bool connection_target_remember = false; // Whether to store the connection_target on successful connection or not
esp_netif_ip_info_t ip_info;
kernel::SystemEventSubscription bootEventSubscription = kernel::NoSystemEventSubscription;
RadioState getRadioState() const {
auto lock = dataMutex.asScopedLock();
lock.lock();
// TODO: Handle lock failure
return radio_state;
}
void setRadioState(RadioState newState) {
auto lock = dataMutex.asScopedLock();
lock.lock();
// TODO: Handle lock failure
radio_state = newState;
}
bool isScanning() const {
auto lock = dataMutex.asScopedLock();
lock.lock();
// TODO: Handle lock failure
return scan_active;
}
void setScanning(bool newState) {
auto lock = dataMutex.asScopedLock();
lock.lock();
// TODO: Handle lock failure
scan_active = newState;
}
bool isScanActive() const {
auto lock = dataMutex.asScopedLock();
lock.lock();
return scan_active;
}
void setScanActive(bool newState) {
auto lock = dataMutex.asScopedLock();
lock.lock();
scan_active = newState;
}
bool isSecureConnection() const {
auto lock = dataMutex.asScopedLock();
lock.lock();
return secure_connection;
}
void setSecureConnection(bool newState) {
auto lock = dataMutex.asScopedLock();
lock.lock();
secure_connection = newState;
}
};
static std::shared_ptr<Wifi> wifi_singleton;
// region Public functions
std::shared_ptr<PubSub> getPubsub() {
auto wifi = wifi_singleton;
if (wifi == nullptr) {
tt_crash("Service not running");
}
return wifi->pubsub;
}
RadioState getRadioState() {
auto wifi = wifi_singleton;
if (wifi != nullptr) {
return wifi->getRadioState();
} else {
return RadioState::Off;
}
}
std::string getConnectionTarget() {
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return "";
}
RadioState state = wifi->getRadioState();
if (
state != RadioState::ConnectionPending &&
state != RadioState::ConnectionActive
) {
return "";
}
return wifi->connection_target.ssid;
}
void scan() {
TT_LOG_I(TAG, "scan()");
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return;
}
getMainDispatcher().dispatch([wifi]() { dispatchScan(wifi); });
}
bool isScanning() {
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return false;
} else {
return wifi->isScanActive();
}
}
void connect(const settings::WifiApSettings& ap, bool remember) {
TT_LOG_I(TAG, "connect(%s, %d)", ap.ssid.c_str(), remember);
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return;
}
// Manual connect (e.g. via app) should stop auto-connecting until the connection is established
wifi->pause_auto_connect = true;
wifi->connection_target = ap;
wifi->connection_target_remember = remember;
if (wifi->getRadioState() == RadioState::Off) {
getMainDispatcher().dispatch([wifi] { dispatchEnable(wifi); });
}
getMainDispatcher().dispatch([wifi] { dispatchConnect(wifi); });
}
void disconnect() {
TT_LOG_I(TAG, "disconnect()");
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return;
}
wifi->connection_target = settings::WifiApSettings("", "");
// Manual disconnect (e.g. via app) should stop auto-connecting until a new connection is established
wifi->pause_auto_connect = true;
getMainDispatcher().dispatch([wifi]() { dispatchDisconnectButKeepActive(wifi); });
}
void clearIp() {
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return;
}
memset(&wifi->ip_info, 0, sizeof(esp_netif_ip_info_t));
}
void setScanRecords(uint16_t records) {
TT_LOG_I(TAG, "setScanRecords(%d)", records);
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return;
}
if (records != wifi->scan_list_limit) {
scan_list_free_safely(wifi);
wifi->scan_list_limit = records;
}
}
std::vector<ApRecord> getScanResults() {
TT_LOG_I(TAG, "getScanResults()");
auto wifi = wifi_singleton;
std::vector<ApRecord> records;
if (wifi == nullptr) {
return records;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return records;
}
if (wifi->scan_list_count > 0) {
uint16_t i = 0;
for (; i < wifi->scan_list_count; ++i) {
records.push_back((ApRecord) {
.ssid = (const char*)wifi->scan_list[i].ssid,
.rssi = wifi->scan_list[i].rssi,
.channel = wifi->scan_list[i].primary,
.auth_mode = wifi->scan_list[i].authmode
});
}
}
return records;
}
void setEnabled(bool enabled) {
TT_LOG_I(TAG, "setEnabled(%d)", enabled);
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return;
}
if (enabled) {
getMainDispatcher().dispatch([wifi] { dispatchEnable(wifi); });
} else {
getMainDispatcher().dispatch([wifi] { dispatchDisable(wifi); });
}
wifi->pause_auto_connect = false;
wifi->last_scan_time = 0;
}
bool isConnectionSecure() {
auto wifi = wifi_singleton;
if (wifi == nullptr) {
return false;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
return false;
}
return wifi->isSecureConnection();
}
int getRssi() {
assert(wifi_singleton);
static int rssi = 0;
if (esp_wifi_sta_get_rssi(&rssi) == ESP_OK) {
return rssi;
} else {
return 1;
}
}
// endregion Public functions
static void scan_list_alloc(std::shared_ptr<Wifi> wifi) {
auto lock = wifi->dataMutex.asScopedLock();
if (lock.lock()) {
assert(wifi->scan_list == nullptr);
wifi->scan_list = static_cast<wifi_ap_record_t*>(malloc(sizeof(wifi_ap_record_t) * wifi->scan_list_limit));
wifi->scan_list_count = 0;
}
}
static void scan_list_alloc_safely(std::shared_ptr<Wifi> wifi) {
auto lock = wifi->dataMutex.asScopedLock();
if (lock.lock()) {
if (wifi->scan_list == nullptr) {
scan_list_alloc(wifi);
}
}
}
static void scan_list_free(std::shared_ptr<Wifi> wifi) {
auto lock = wifi->dataMutex.asScopedLock();
if (lock.lock()) {
assert(wifi->scan_list != nullptr);
free(wifi->scan_list);
wifi->scan_list = nullptr;
wifi->scan_list_count = 0;
}
}
static void scan_list_free_safely(std::shared_ptr<Wifi> wifi) {
auto lock = wifi->dataMutex.asScopedLock();
if (lock.lock()) {
if (wifi->scan_list != nullptr) {
scan_list_free(wifi);
}
}
}
static void publish_event_simple(std::shared_ptr<Wifi> wifi, EventType type) {
auto lock = wifi->dataMutex.asScopedLock();
if (lock.lock()) {
Event turning_on_event = {.type = type};
wifi->pubsub->publish(&turning_on_event);
}
}
static bool copy_scan_list(std::shared_ptr<Wifi> wifi) {
auto state = wifi->getRadioState();
bool can_fetch_results = (state == RadioState::On || state == RadioState::ConnectionActive) &&
wifi->isScanActive();
if (!can_fetch_results) {
TT_LOG_I(TAG, "Skip scan result fetching");
return false;
}
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock()) {
return false;
}
// Create scan list if it does not exist
scan_list_alloc_safely(wifi);
wifi->scan_list_count = 0;
uint16_t record_count = wifi->scan_list_limit;
esp_err_t scan_result = esp_wifi_scan_get_ap_records(&record_count, wifi->scan_list);
if (scan_result == ESP_OK) {
uint16_t safe_record_count = std::min(wifi->scan_list_limit, record_count);
wifi->scan_list_count = safe_record_count;
TT_LOG_I(TAG, "Scanned %u APs. Showing %u:", record_count, safe_record_count);
for (uint16_t i = 0; i < safe_record_count; i++) {
wifi_ap_record_t* record = &wifi->scan_list[i];
TT_LOG_I(TAG, " - SSID %s (RSSI %d, channel %d)", record->ssid, record->rssi, record->primary);
}
return true;
} else {
TT_LOG_I(TAG, "Failed to get scanned records: %s", esp_err_to_name(scan_result));
return false;
}
}
static bool find_auto_connect_ap(std::shared_ptr<Wifi> wifi, settings::WifiApSettings& settings) {
auto lock = wifi->dataMutex.asScopedLock();
if (lock.lock(10 / portTICK_PERIOD_MS)) {
TT_LOG_I(TAG, "auto_connect()");
for (int i = 0; i < wifi->scan_list_count; ++i) {
auto ssid = reinterpret_cast<const char*>(wifi->scan_list[i].ssid);
if (settings::contains(ssid)) {
static_assert(sizeof(wifi->scan_list[i].ssid) == (TT_WIFI_SSID_LIMIT + 1), "SSID size mismatch");
if (settings::load(ssid, settings)) {
if (settings.autoConnect) {
return true;
}
} else {
TT_LOG_E(TAG, "Failed to load credentials for ssid %s", ssid);
}
break;
}
}
}
return false;
}
static void dispatchAutoConnect(std::shared_ptr<Wifi> wifi) {
TT_LOG_I(TAG, "dispatchAutoConnect()");
settings::WifiApSettings settings;
if (find_auto_connect_ap(wifi, settings)) {
TT_LOG_I(TAG, "Auto-connecting to %s", settings.ssid.c_str());
connect(settings, false);
// TODO: We currently have to manually reset it because connect() sets it.
// connect() assumes it's only being called by the user and not internally, so it disables auto-connect
wifi->pause_auto_connect = false;
}
}
static void eventHandler(TT_UNUSED void* arg, esp_event_base_t event_base, int32_t event_id, void* event_data) {
auto wifi = wifi_singleton;
if (wifi == nullptr) {
TT_LOG_E(TAG, "eventHandler: no wifi instance");
return;
}
if (event_base == WIFI_EVENT) {
TT_LOG_I(TAG, "eventHandler: WIFI_EVENT (%ld)", event_id);
} else if (event_base == IP_EVENT) {
TT_LOG_I(TAG, "eventHandler: IP_EVENT (%ld)", event_id);
}
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
TT_LOG_I(TAG, "eventHandler: sta start");
if (wifi->getRadioState() == RadioState::ConnectionPending) {
esp_wifi_connect();
}
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
TT_LOG_I(TAG, "eventHandler: disconnected");
clearIp();
switch (wifi->getRadioState()) {
case RadioState::ConnectionPending:
wifi->connection_wait_flags.set(WIFI_FAIL_BIT);
break;
case RadioState::On:
// Ensure we can reconnect again
wifi->pause_auto_connect = false;
break;
default:
break;
}
wifi->setRadioState(RadioState::On);
publish_event_simple(wifi, EventType::Disconnected);
kernel::publishSystemEvent(kernel::SystemEvent::NetworkDisconnected);
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
auto* event = static_cast<ip_event_got_ip_t*>(event_data);
memcpy(&wifi->ip_info, &event->ip_info, sizeof(esp_netif_ip_info_t));
TT_LOG_I(TAG, "eventHandler: got ip:" IPSTR, IP2STR(&event->ip_info.ip));
if (wifi->getRadioState() == RadioState::ConnectionPending) {
wifi->connection_wait_flags.set(WIFI_CONNECTED_BIT);
// We resume auto-connecting only when there was an explicit request by the user for the connection
// TODO: Make thread-safe
wifi->pause_auto_connect = false; // Resume auto-connection
}
kernel::publishSystemEvent(kernel::SystemEvent::NetworkConnected);
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_SCAN_DONE) {
auto* event = static_cast<wifi_event_sta_scan_done_t*>(event_data);
TT_LOG_I(TAG, "eventHandler: wifi scanning done (scan id %u)", event->scan_id);
bool copied_list = copy_scan_list(wifi);
auto state = wifi->getRadioState();
if (
state != RadioState::Off &&
state != RadioState::OffPending
) {
wifi->setScanActive(false);
esp_wifi_scan_stop();
}
publish_event_simple(wifi_singleton, EventType::ScanFinished);
TT_LOG_I(TAG, "eventHandler: Finished scan");
if (copied_list && wifi_singleton->getRadioState() == RadioState::On && !wifi->pause_auto_connect) {
getMainDispatcher().dispatch([wifi]() { dispatchAutoConnect(wifi); });
}
}
}
static void dispatchEnable(std::shared_ptr<Wifi> wifi) {
TT_LOG_I(TAG, "dispatchEnable()");
RadioState state = wifi->getRadioState();
if (
state == RadioState::On ||
state == RadioState::OnPending ||
state == RadioState::OffPending
) {
TT_LOG_W(TAG, "Can't enable from current state");
return;
}
auto lock = wifi->radioMutex.asScopedLock();
if (lock.lock(50 / portTICK_PERIOD_MS)) {
TT_LOG_I(TAG, "Enabling");
wifi->setRadioState(RadioState::OnPending);
publish_event_simple(wifi, EventType::RadioStateOnPending);
if (wifi->netif != nullptr) {
esp_netif_destroy(wifi->netif);
}
wifi->netif = esp_netif_create_default_wifi_sta();
// Warning: this is the memory-intensive operation
// It uses over 117kB of RAM with default settings for S3 on IDF v5.1.2
wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
esp_err_t init_result = esp_wifi_init(&config);
if (init_result != ESP_OK) {
TT_LOG_E(TAG, "Wifi init failed");
if (init_result == ESP_ERR_NO_MEM) {
TT_LOG_E(TAG, "Insufficient memory");
}
wifi->setRadioState(RadioState::Off);
publish_event_simple(wifi, EventType::RadioStateOff);
return;
}
esp_wifi_set_storage(WIFI_STORAGE_RAM);
// TODO: don't crash on check failure
ESP_ERROR_CHECK(esp_event_handler_instance_register(
WIFI_EVENT,
ESP_EVENT_ANY_ID,
&eventHandler,
nullptr,
&wifi->event_handler_any_id
));
// TODO: don't crash on check failure
ESP_ERROR_CHECK(esp_event_handler_instance_register(
IP_EVENT,
IP_EVENT_STA_GOT_IP,
&eventHandler,
nullptr,
&wifi->event_handler_got_ip
));
if (esp_wifi_set_mode(WIFI_MODE_STA) != ESP_OK) {
TT_LOG_E(TAG, "Wifi mode setting failed");
wifi->setRadioState(RadioState::Off);
esp_wifi_deinit();
publish_event_simple(wifi, EventType::RadioStateOff);
return;
}
esp_err_t start_result = esp_wifi_start();
if (start_result != ESP_OK) {
TT_LOG_E(TAG, "Wifi start failed");
if (start_result == ESP_ERR_NO_MEM) {
TT_LOG_E(TAG, "Insufficient memory");
}
wifi->setRadioState(RadioState::Off);
esp_wifi_set_mode(WIFI_MODE_NULL);
esp_wifi_deinit();
publish_event_simple(wifi, EventType::RadioStateOff);
return;
}
wifi->setRadioState(RadioState::On);
publish_event_simple(wifi, EventType::RadioStateOn);
wifi->pause_auto_connect = false;
TT_LOG_I(TAG, "Enabled");
} else {
TT_LOG_E(TAG, LOG_MESSAGE_MUTEX_LOCK_FAILED);
}
}
static void dispatchDisable(std::shared_ptr<Wifi> wifi) {
TT_LOG_I(TAG, "dispatchDisable()");
auto lock = wifi->radioMutex.asScopedLock();
if (!lock.lock(50 / portTICK_PERIOD_MS)) {
TT_LOG_E(TAG, LOG_MESSAGE_MUTEX_LOCK_FAILED_FMT, "disable()");
return;
}
RadioState state = wifi->getRadioState();
if (
state == RadioState::Off ||
state == RadioState::OffPending ||
state == RadioState::OnPending
) {
TT_LOG_W(TAG, "Can't disable from current state");
return;
}
TT_LOG_I(TAG, "Disabling");
wifi->setRadioState(RadioState::OffPending);
publish_event_simple(wifi, EventType::RadioStateOffPending);
// Free up scan list memory
scan_list_free_safely(wifi_singleton);
if (esp_wifi_stop() != ESP_OK) {
TT_LOG_E(TAG, "Failed to stop radio");
wifi->setRadioState(RadioState::On);
publish_event_simple(wifi, EventType::RadioStateOn);
return;
}
if (esp_wifi_set_mode(WIFI_MODE_NULL) != ESP_OK) {
TT_LOG_E(TAG, "Failed to unset mode");
}
if (esp_event_handler_instance_unregister(
WIFI_EVENT,
ESP_EVENT_ANY_ID,
wifi->event_handler_any_id
) != ESP_OK) {
TT_LOG_E(TAG, "Failed to unregister id event handler");
}
if (esp_event_handler_instance_unregister(
IP_EVENT,
IP_EVENT_STA_GOT_IP,
wifi->event_handler_got_ip
) != ESP_OK) {
TT_LOG_E(TAG, "Failed to unregister ip event handler");
}
if (esp_wifi_deinit() != ESP_OK) {
TT_LOG_E(TAG, "Failed to deinit");
}
assert(wifi->netif != nullptr);
esp_netif_destroy(wifi->netif);
wifi->netif = nullptr;
wifi->setScanActive(false);
wifi->setRadioState(RadioState::Off);
publish_event_simple(wifi, EventType::RadioStateOff);
TT_LOG_I(TAG, "Disabled");
}
static void dispatchScan(std::shared_ptr<Wifi> wifi) {
TT_LOG_I(TAG, "dispatchScan()");
auto lock = wifi->radioMutex.asScopedLock();
if (!lock.lock(10 / portTICK_PERIOD_MS)) {
TT_LOG_E(TAG, LOG_MESSAGE_MUTEX_LOCK_FAILED);
return;
}
RadioState state = wifi->getRadioState();
if (state != RadioState::On && state != RadioState::ConnectionActive && state != RadioState::ConnectionPending) {
TT_LOG_W(TAG, "Scan unavailable: wifi not enabled");
return;
}
if (wifi->isScanActive()) {
TT_LOG_W(TAG, "Scan already pending");
return;
}
// TODO: Thread safety
wifi->last_scan_time = tt::kernel::getTicks();
if (esp_wifi_scan_start(nullptr, false) != ESP_OK) {
TT_LOG_I(TAG, "Can't start scan");
return;
}
TT_LOG_I(TAG, "Starting scan");
wifi->setScanActive(true);
publish_event_simple(wifi, EventType::ScanStarted);
}
static void dispatchConnect(std::shared_ptr<Wifi> wifi) {
TT_LOG_I(TAG, "dispatchConnect()");
auto lock = wifi->radioMutex.asScopedLock();
if (!lock.lock(50 / portTICK_PERIOD_MS)) {
TT_LOG_E(TAG, LOG_MESSAGE_MUTEX_LOCK_FAILED_FMT, "dispatchConnect()");
return;
}
TT_LOG_I(TAG, "Connecting to %s", wifi->connection_target.ssid.c_str());
// Stop radio first, if needed
RadioState radio_state = wifi->getRadioState();
if (
radio_state == RadioState::On ||
radio_state == RadioState::ConnectionActive ||
radio_state == RadioState::ConnectionPending
) {
TT_LOG_I(TAG, "Connecting: Stopping radio first");
esp_err_t stop_result = esp_wifi_stop();
wifi->setScanActive(false);
if (stop_result != ESP_OK) {
TT_LOG_E(TAG, "Connecting: Failed to disconnect (%s)", esp_err_to_name(stop_result));
return;
}
}
wifi->setScanActive(false);
wifi->setRadioState(RadioState::ConnectionPending);
publish_event_simple(wifi, EventType::ConnectionPending);
wifi_config_t config;
memset(&config, 0, sizeof(wifi_config_t));
config.sta.channel = wifi_singleton->connection_target.channel;
config.sta.scan_method = WIFI_FAST_SCAN;
config.sta.sort_method = WIFI_CONNECT_AP_BY_SIGNAL;
config.sta.threshold.rssi = -127;
config.sta.pmf_cfg.capable = true;
memcpy(config.sta.ssid, wifi_singleton->connection_target.ssid.c_str(), wifi_singleton->connection_target.ssid.size());
if (wifi_singleton->connection_target.password[0] != 0x00) {
memcpy(config.sta.password, wifi_singleton->connection_target.password.c_str(), wifi_singleton->connection_target.password.size());
config.sta.threshold.authmode = WIFI_AUTH_WPA2_PSK;
}
TT_LOG_I(TAG, "esp_wifi_set_config()");
esp_err_t set_config_result = esp_wifi_set_config(WIFI_IF_STA, &config);
if (set_config_result != ESP_OK) {
wifi->setRadioState(RadioState::On);
TT_LOG_E(TAG, "Failed to set wifi config (%s)", esp_err_to_name(set_config_result));
publish_event_simple(wifi, EventType::ConnectionFailed);
return;
}
TT_LOG_I(TAG, "esp_wifi_start()");
esp_err_t wifi_start_result = esp_wifi_start();
if (wifi_start_result != ESP_OK) {
wifi->setRadioState(RadioState::On);
TT_LOG_E(TAG, "Failed to start wifi to begin connecting (%s)", esp_err_to_name(wifi_start_result));
publish_event_simple(wifi, EventType::ConnectionFailed);
return;
}
/* Waiting until either the connection is established (WIFI_CONNECTED_BIT)
* or connection failed for the maximum number of re-tries (WIFI_FAIL_BIT).
* The bits are set by wifi_event_handler() */
uint32_t bits = wifi_singleton->connection_wait_flags.wait(WIFI_FAIL_BIT | WIFI_CONNECTED_BIT);
TT_LOG_I(TAG, "Waiting for EventFlag by event_handler()");
if (bits & WIFI_CONNECTED_BIT) {
wifi->setSecureConnection(config.sta.password[0] != 0x00U);
wifi->setRadioState(RadioState::ConnectionActive);
publish_event_simple(wifi, EventType::ConnectionSuccess);
TT_LOG_I(TAG, "Connected to %s", wifi->connection_target.ssid.c_str());
if (wifi->connection_target_remember) {
if (!settings::save(wifi->connection_target)) {
TT_LOG_E(TAG, "Failed to store credentials");
} else {
TT_LOG_I(TAG, "Stored credentials");
}
}
} else if (bits & WIFI_FAIL_BIT) {
wifi->setRadioState(RadioState::On);
publish_event_simple(wifi, EventType::ConnectionFailed);
TT_LOG_I(TAG, "Failed to connect to %s", wifi->connection_target.ssid.c_str());
} else {
wifi->setRadioState(RadioState::On);
publish_event_simple(wifi, EventType::ConnectionFailed);
TT_LOG_E(TAG, "UNEXPECTED EVENT");
}
wifi_singleton->connection_wait_flags.clear(WIFI_FAIL_BIT | WIFI_CONNECTED_BIT);
}
static void dispatchDisconnectButKeepActive(std::shared_ptr<Wifi> wifi) {
TT_LOG_I(TAG, "dispatchDisconnectButKeepActive()");
auto lock = wifi->radioMutex.asScopedLock();
if (!lock.lock(50 / portTICK_PERIOD_MS)) {
TT_LOG_E(TAG, LOG_MESSAGE_MUTEX_LOCK_FAILED);
return;
}
esp_err_t stop_result = esp_wifi_stop();
if (stop_result != ESP_OK) {
TT_LOG_E(TAG, "Failed to disconnect (%s)", esp_err_to_name(stop_result));
return;
}
wifi_config_t config;
memset(&config, 0, sizeof(wifi_config_t));
config.sta.channel = wifi_singleton->connection_target.channel;
config.sta.scan_method = WIFI_ALL_CHANNEL_SCAN;
config.sta.sort_method = WIFI_CONNECT_AP_BY_SIGNAL;
config.sta.threshold.rssi = -127;
config.sta.pmf_cfg.capable = true;
esp_err_t set_config_result = esp_wifi_set_config(WIFI_IF_STA, &config);
if (set_config_result != ESP_OK) {
// TODO: disable radio, because radio state is in limbo between off and on
wifi->setRadioState(RadioState::Off);
TT_LOG_E(TAG, "failed to set wifi config (%s)", esp_err_to_name(set_config_result));
publish_event_simple(wifi, EventType::RadioStateOff);
return;
}
esp_err_t wifi_start_result = esp_wifi_start();
if (wifi_start_result != ESP_OK) {
// TODO: disable radio, because radio state is in limbo between off and on
wifi->setRadioState(RadioState::Off);
TT_LOG_E(TAG, "failed to start wifi to begin connecting (%s)", esp_err_to_name(wifi_start_result));
publish_event_simple(wifi, EventType::RadioStateOff);
return;
}
wifi->setRadioState(RadioState::On);
publish_event_simple(wifi, EventType::Disconnected);
TT_LOG_I(TAG, "Disconnected");
}
static bool shouldScanForAutoConnect(std::shared_ptr<Wifi> wifi) {
auto lock = wifi->dataMutex.asScopedLock();
if (!lock.lock(100)) {
return false;
}
bool is_radio_in_scannable_state = wifi->getRadioState() == RadioState::On &&
!wifi->isScanActive() &&
!wifi->pause_auto_connect;
if (!is_radio_in_scannable_state) {
return false;
}
TickType_t current_time = tt::kernel::getTicks();
bool scan_time_has_looped = (current_time < wifi->last_scan_time);
bool no_recent_scan = (current_time - wifi->last_scan_time) > (AUTO_SCAN_INTERVAL / portTICK_PERIOD_MS);
if (!scan_time_has_looped && !no_recent_scan) {
}
return scan_time_has_looped || no_recent_scan;
}
void onAutoConnectTimer() {
auto wifi = std::static_pointer_cast<Wifi>(wifi_singleton);
// Automatic scanning is done so we can automatically connect to access points
bool should_auto_scan = shouldScanForAutoConnect(wifi);
if (should_auto_scan) {
getMainDispatcher().dispatch([wifi]() { dispatchScan(wifi); });
}
}
std::string getIp() {
auto wifi = std::static_pointer_cast<Wifi>(wifi_singleton);
auto lock = wifi->dataMutex.asScopedLock();
lock.lock();
return std::format("{}.{}.{}.{}", IP2STR(&wifi->ip_info.ip));
}
class WifiService final : public Service {
public:
void onStart(ServiceContext& service) override {
assert(wifi_singleton == nullptr);
wifi_singleton = std::make_shared<Wifi>();
wifi_singleton->bootEventSubscription = kernel::subscribeSystemEvent(kernel::SystemEvent::BootSplash, [](auto) {
bootSplashInit();
});
wifi_singleton->autoConnectTimer = std::make_unique<Timer>(Timer::Type::Periodic, []() { onAutoConnectTimer(); });
// We want to try and scan more often in case of startup or scan lock failure
wifi_singleton->autoConnectTimer->start(std::min(2000, AUTO_SCAN_INTERVAL));
if (settings::shouldEnableOnBoot()) {
TT_LOG_I(TAG, "Auto-enabling due to setting");
getMainDispatcher().dispatch([] { dispatchEnable(wifi_singleton); });
}
}
void onStop(ServiceContext& service) override {
auto wifi = wifi_singleton;
assert(wifi != nullptr);
RadioState state = wifi->getRadioState();
if (state != RadioState::Off) {
dispatchDisable(wifi);
}
wifi->autoConnectTimer->stop();
wifi->autoConnectTimer = nullptr; // Must release as it holds a reference to this Wifi instance
// Acquire all mutexes
wifi->dataMutex.lock();
wifi->radioMutex.lock();
// Detach
wifi_singleton = nullptr;
// Release mutexes
wifi->dataMutex.unlock();
wifi->radioMutex.unlock();
// Release (hopefully) last Wifi instance by scope
}
};
extern const ServiceManifest manifest = {
.id = "Wifi",
.createService = create<WifiService>
};
} // namespace
#endif // ESP_PLATFORM