Ken Van Hoeylandt 1627b9fa85
Merge develop into main (#316)
- Updated all boards to use `hal::Configuration.createDevices`
- Updated all boards to use new directory structure and file naming convention
- Refactored `Xpt2046SoftSpi` driver.
- Created `Axp2101Power` device in `Drivers/AXP2101`
- Removed global static instances from some drivers (instances that kept a reference to the Device*)
- Improved `SystemInfoApp` UI: better memory labels, hide external memory bar when there's no PSRAM
- Fix for HAL: register touch devices after displays are registered
- Fix for Boot splash hanging on WiFi init: unlock file lock after using it
2025-09-03 22:05:28 +02:00

142 lines
4.5 KiB
C++

#include "TpagerEncoder.h"
#include <Tactility/Log.h>
#include <Tactility/hal/Gpio.h>
constexpr auto* TAG = "TpagerEncoder";
constexpr auto ENCODER_A = GPIO_NUM_40;
constexpr auto ENCODER_B = GPIO_NUM_41;
constexpr auto ENCODER_ENTER = GPIO_NUM_7;
void TpagerEncoder::readCallback(lv_indev_t* indev, lv_indev_data_t* data) {
TpagerEncoder* encoder = static_cast<TpagerEncoder*>(lv_indev_get_user_data(indev));
constexpr int enter_filter_threshold = 2;
static int enter_filter = 0;
constexpr int pulses_click = 4;
static int pulses_prev = 0;
// Defaults
data->enc_diff = 0;
data->state = LV_INDEV_STATE_RELEASED;
int pulses = encoder->getEncoderPulses();
int pulse_diff = (pulses - pulses_prev);
if ((pulse_diff > pulses_click) || (pulse_diff < -pulses_click)) {
data->enc_diff = pulse_diff / pulses_click;
pulses_prev = pulses;
}
bool enter = !gpio_get_level(ENCODER_ENTER);
if (enter && (enter_filter < enter_filter_threshold)) {
enter_filter++;
}
if (!enter && (enter_filter > 0)) {
enter_filter--;
}
if (enter_filter == enter_filter_threshold) {
data->state = LV_INDEV_STATE_PRESSED;
}
}
void TpagerEncoder::initEncoder() {
constexpr int LOW_LIMIT = -127;
constexpr int HIGH_LIMIT = 126;
// Accum. count makes it that over- and underflows are automatically compensated.
// Prerequisite: watchpoints at low and high limit
pcnt_unit_config_t unit_config = {
.low_limit = LOW_LIMIT,
.high_limit = HIGH_LIMIT,
.flags = {.accum_count = 1},
};
if (pcnt_new_unit(&unit_config, &encPcntUnit) != ESP_OK) {
TT_LOG_E(TAG, "Pulsecounter intialization failed");
}
pcnt_glitch_filter_config_t filter_config = {
.max_glitch_ns = 1000,
};
if (pcnt_unit_set_glitch_filter(encPcntUnit, &filter_config) != ESP_OK) {
TT_LOG_E(TAG, "Pulsecounter glitch filter config failed");
}
pcnt_chan_config_t chan_1_config = {
.edge_gpio_num = ENCODER_B,
.level_gpio_num = ENCODER_A,
};
pcnt_chan_config_t chan_2_config = {
.edge_gpio_num = ENCODER_A,
.level_gpio_num = ENCODER_B,
};
pcnt_channel_handle_t pcnt_chan_1 = nullptr;
pcnt_channel_handle_t pcnt_chan_2 = nullptr;
if ((pcnt_new_channel(encPcntUnit, &chan_1_config, &pcnt_chan_1) != ESP_OK) ||
(pcnt_new_channel(encPcntUnit, &chan_2_config, &pcnt_chan_2) != ESP_OK)) {
TT_LOG_E(TAG, "Pulsecounter channel config failed");
}
// Second argument is rising edge, third argument is falling edge
if ((pcnt_channel_set_edge_action(pcnt_chan_1, PCNT_CHANNEL_EDGE_ACTION_DECREASE, PCNT_CHANNEL_EDGE_ACTION_INCREASE) != ESP_OK) ||
(pcnt_channel_set_edge_action(pcnt_chan_2, PCNT_CHANNEL_EDGE_ACTION_INCREASE, PCNT_CHANNEL_EDGE_ACTION_DECREASE) != ESP_OK)) {
TT_LOG_E(TAG, "Pulsecounter edge action config failed");
}
// Second argument is low level, third argument is high level
if ((pcnt_channel_set_level_action(pcnt_chan_1, PCNT_CHANNEL_LEVEL_ACTION_KEEP, PCNT_CHANNEL_LEVEL_ACTION_INVERSE) != ESP_OK) ||
(pcnt_channel_set_level_action(pcnt_chan_2, PCNT_CHANNEL_LEVEL_ACTION_KEEP, PCNT_CHANNEL_LEVEL_ACTION_INVERSE) != ESP_OK)) {
TT_LOG_E(TAG, "Pulsecounter level action config failed");
}
if ((pcnt_unit_add_watch_point(encPcntUnit, LOW_LIMIT) != ESP_OK) ||
(pcnt_unit_add_watch_point(encPcntUnit, HIGH_LIMIT) != ESP_OK)) {
TT_LOG_E(TAG, "Pulsecounter watch point config failed");
}
if (pcnt_unit_enable(encPcntUnit) != ESP_OK) {
TT_LOG_E(TAG, "Pulsecounter could not be enabled");
}
if (pcnt_unit_clear_count(encPcntUnit) != ESP_OK) {
TT_LOG_E(TAG, "Pulsecounter could not be cleared");
}
if (pcnt_unit_start(encPcntUnit) != ESP_OK) {
TT_LOG_E(TAG, "Pulsecounter could not be started");
}
}
int TpagerEncoder::getEncoderPulses() const {
int pulses = 0;
pcnt_unit_get_count(encPcntUnit, &pulses);
return pulses;
}
bool TpagerEncoder::startLvgl(lv_display_t* display) {
initEncoder();
gpio_input_enable(ENCODER_ENTER);
encHandle = lv_indev_create();
lv_indev_set_type(encHandle, LV_INDEV_TYPE_ENCODER);
lv_indev_set_read_cb(encHandle, &readCallback);
lv_indev_set_display(encHandle, display);
lv_indev_set_user_data(encHandle, this);
return true;
}
bool TpagerEncoder::stopLvgl() {
lv_indev_delete(encHandle);
encHandle = nullptr;
return true;
}